〖课程介绍〗:
全民人工智能时代,不甘心只做一个旁观者,那就现在开始,从人工智能最流行的框架TensorFlow学起,本课程将手把手带你掌握TensorFlow技术,遵循从基础到实践应用的完整过程,是你通向人工智能开发的首选!
〖课程目录〗:
第1章 课程整体介绍1 节 | 17分钟
课程背景简介,项目成果演示,知识点和软件简介,让大家对接下来的学习心中有数
收起列表
视频:1-1 课程整体介绍及导学 (16:24)
第2章 人工智能基础知识 试看9 节 | 66分钟
人工智能、神经网络、机器学习、深度学习、激活函数、过拟合、卷积神经网络、循环神经网络等知识的循序渐进讲解。培养大家对课程的兴趣,了解人工智能前景,对人工智能抱持正确态度
收起列表
视频:2-1 什么是人工智能 (04:48)试看
视频:2-2 人工智能前景 (05:26)试看
视频:2-3 人工智能需要的基本数学知识 (01:57)试看
视频:2-4 人工智能简史 (07:47)
视频:2-5 AI、机器学习和深度学习的关联 (02:32)
视频:2-6 什么是机器学习 (19:05)
视频:2-7 面对AI,我们应有的态度 (05:16)
视频:2-8 什么是过拟合 (07:05)
视频:2-9 什么是深度学习 (11:08)
第3章 TensorFlow简介和开发环境搭建12 节 | 106分钟
TensorFlow是什么,TensorFlow原理和前景,TensorFlow和其他框架的对比(例如 Theano,ScikitLearn,Keras,Caffe2,PyTorch等)。开发环境搭建,并提供讲师已经配置好开发环境的虚拟机镜像
收起列表
视频:3-1 什么是TensorFlow (10:13)
视频:3-2 TensorFlow和其他机器学习库的对比1 (26:46)
视频:3-3 如何学习TensorFlow (11:42)
视频:3-4 TensorFlow前景 (03:59)
视频:3-5 如何使用课程提供的虚拟机文件 (07:15)
视频:3-6 安装VirtualBox (02:41)
视频:3-7 安装Ubuntu (15:29)
视频:3-8 配置Ubuntu系统 (05:46)
视频:3-9 安装python (04:02)
视频:3-10 安装TensorFlow(上) (10:42)
视频:3-11 安装TensorFLow(下) (05:47)
视频:3-12 安装Python类库 (01:20)
第4章 TensorFlow原理与进阶(代码实践)36 节 | 459分钟
TensorFlow核心概念,TensorFlow激励函数,TensorFlow构建神经网络,TensorFlow优化器,可视化利器TensorBoard,TensorFlow解决过拟合,TensorFlow实现卷积神经网络和循环神经网络等。通过生动图文原理解释和实例,循序渐进掌握TensorFlow
收起列表
视频:4-1 从HelloWorld开始 (05:41)
视频:4-2 TensorFlow的编程模式 (02:55)
视频:4-3 TensorFlow的基础结构 (02:37)
视频:4-4 图和会话 (05:09)
视频:4-5 Python常用库Numpy的使用 (11:39)
视频:4-6 什么是Tensor(上) (17:59)
视频:4-7 什么是Tensor(下) (16:26)
视频:4-8 图和会话原理及案例(上) (15:58)
视频:4-9 图和会话原理及案例(下) (11:47)
视频:4-10 可视化利器TensorBoard(上) (18:42)
视频:4-11 可视化利器TensorBoard(下) (17:52)
视频:4-12 酷炫模拟游乐园PlayGround (10:25)
视频:4-13 常用Python库Matplotlib (16:32)
视频:4-14 综合小练习:梯度下降解决线性回归(上) (15:57)
视频:4-15 综合小练习:梯度下降解决线性回归(中) (11:38)
视频:4-16 综合小练习:梯度下降解决线性回归(下) (13:01)
视频:4-17 激活函数(上) (10:50)
视频:4-18 激活函数(下) (05:35)
视频:4-19 动手实现CNN卷积神经网络(一) (16:16)
视频:4-20 动手实现CNN卷积神经网络(二) (19:03)
视频:4-21 动手实现CNN卷积神经网络(三) (17:53)
视频:4-22 动手实现CNN卷积神经网络(四) (12:39)
视频:4-23 动手实现CNN卷积神经网络(五) (15:50)
视频:4-24 动手实现RNN-LSTM循环神经网络(一):背景和知识点 (26:43)
视频:4-25 动手实现RNN-LSTM循环神经网络(二):编写实用方法(上) (11:27)
视频:4-26 动手实现RNN-LSTM循环神经网络(三):编写实用方法(中) (12:23)
视频:4-27 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)1 (08:28)
视频:4-28 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)2 (08:17)
视频:4-29 动手实现RNN-LSTM循环神经网络(五):编写神经网络模型(上) (16:48)
视频:4-30 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)1 (10:10)
视频:4-31 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)2 (12:42)
视频:4-32 动手实现RNN-LSTM循环神经网络(七):编写神经网络模型(下) (10:27)
视频:4-33 动手实现RNN-LSTM循环神经网络(八):编写训练方法(上) (14:30)
视频:4-34 动手实现RNN-LSTM循环神经网络(九):编写训练方法(下) (11:51)
视频:4-35 动手实现RNN-LSTM循环神经网络(十):编写测试方法 (14:40)
视频:4-36 动手实现RNN-LSTM循环神经网络(十一):实际训练和测试 (07:29)
第5章 案例一 会作曲的人工智能15 节 | 233分钟
结合RNN-LSTM开发能作出动听旋律的炫酷人工智能:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
收起列表
视频:5-1 背景和知识点简介 (14:14)
视频:5-2 音乐和数学的联系 (06:56)
视频:5-3 什么是MIDI文件 (08:15)
视频:5-4 配置开发环境 (04:04)
视频:5-5 编写转换MIDI到MP3的方法 (08:42)
视频:5-6 Python音乐库Music21的使用和测试方法 (11:30)
视频:5-7 编写整个神经网络模型 (40:53)
视频:5-8 编写从训练文件获取音符的方法 (15:39)
视频:5-9 编写从预测数据来生成音乐的方法 (16:15)
视频:5-10 编写训练神经网络的方法(一) (19:53)
视频:5-11 编写训练神经网络的方法(二) (19:32)
视频:5-12 编写训练神经网络的方法(三) (19:43)
视频:5-13 编写神经网络生成音乐的方法(一) (18:27)
视频:5-14 编写神经网络生成音乐的方法(二) (26:28)
视频:5-15 纯TensorFlow版的预告 (02:18)
第6章 案例二 会Photoshop的人工智能12 节 | 116分钟
结合DCGAN开发会PS的人工智能。从此P图不用愁,分分钟搞定N多图片的创建:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
收起列表
视频:6-1 背景和知识点简介 (04:18)
视频:6-2 配置开发环境 (05:26)
视频:6-3 什么是GAN(生成对抗网络) (05:44)
视频:6-4 什么是DCGAN (06:44)
视频:6-5 编写DCGAN中的判别器模型(上) (13:10)
视频:6-6 编写DCGAN中的判别器模型(下) (13:45)
视频:6-7 编写DCGAN中的生成器模型 (09:17)
视频:6-8 编写训练神经网络的方法(上) (15:37)
视频:6-9 编写训练神经网络的方法(下) (13:39)
视频:6-10 编写神经网络生成图片的方法 (15:30)
视频:6-11 代码完成和测试模型 (09:28)
视频:6-12 纯TensorFlow版的预告 (02:18)
第7章 案例三 会开3D赛车的人工智能18 节 | 256分钟
结合深度强化学习中的A3C实现会开3D赛车的人工智能,学会自动驾驶:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
收起列表
视频:7-1 背景和知识点简介 (08:59)
视频:7-2 强化学习的经典实验环境 (18:27)
视频:7-3 配置开发环境(1) (15:08)
视频:7-4 配置开发环境(2) (19:54)
视频:7-5 什么是强化学习 (19:45)
视频:7-6 什么是Q Learning (04:13)
视频:7-7 Q-Learning 实现机器人走迷宫:创建环境 (12:40)
视频:7-8 Q-Learning 实现机器人走迷宫:决策算法(1) (16:48)
视频:7-9 Q-Learning 实现机器人走迷宫:决策算法(2) (10:11)
视频:7-10 Q-Learning 实现机器人走迷宫:游戏主程序 (12:25)
视频:7-11 Deep Q Learning 实现迷宫游戏:决策算法(1) (15:34)
视频:7-12 Deep Q Learning 实现迷宫游戏:决策算法(2) (14:34)
视频:7-13 Deep Q Learning 实现迷宫游戏:决策算法(3) (14:24)
视频:7-14 Deep Q Learning 实现迷宫游戏:决策算法(4)和主程序 (12:31)
视频:7-15 Policy Gradient 实现 Gym 游戏 (15:30)
视频:7-16 A3C 实现 3D 赛车游戏:成果演示 (13:09)
视频:7-17 A3C实现3D赛车游戏:讲解A3C和编写环境 (14:51)
视频:7-18 A3C实现3D赛车游戏:编写A3C算法和主程序 (16:18)
第8章 知识点总结和课程延展5 节 | 40分钟
知识点总结,如何学习一门知识,如何深入人工智能和TensorFlow,如何学习数学和英语,TensorFlow还能做什么,等等。
收起列表
视频:8-1 总结陈词和补充 (07:32)
视频:8-2 如何学好英语 (07:30)
视频:8-3 如何学好数学 (06:51)
视频:8-4 如何学习一门技术及课程知识点总结 (11:05)
视频:8-5 深入AI和TensorFlow (06:15)
1、本内容转载于网络,版权归原作者所有,所涉及软件、配套资料等均与本站无关,请自行辨别内容真伪。
2、虚拟资源不支持退换,资源存放百度/115/夸克/123等网盘,因网盘屏蔽有1‰资源内容不全,介意者慎拍。
3、本内容若侵犯到您的版权利益,请联系:15906391238,我们会尽快给予删除处理。